$(\text{Si}_{7.41}^{\text{Al}}_{0.59})(\text{Mgl}.78^{\text{Fe}}_{0.35}^{\text{Al}}_{1.22})^{0}_{18.96}(\text{OH})_{5.28}(\text{OH}_{2})_{1.76}$ and of sepiolite, on the basis of anion $(\text{Si}_{12}^{0}_{30})^{12}$: Si₁₂(Mg5.31Al_{1.38}Fe0.42)0_{30.51}(OH)_{2.66}(OH₂)_{4.83} Water content was determined from weight loss curves on derivatograms /5,6/. Experimental method. The samples were subjected to hydrostatic pressure ($\underline{P}_{H_2O} = 800$, 1400, 2000 kg/cm²) in cold seal pressure vessels of the Tuttle type /7/. The charges were sealed in platinum capsules, heated at temperatures from 100 to 700° C, and quenched under identical conditions for both minerals. The x-ray diffraction data were obtained on diffractometer DRON-1, and in part of diffractometer URS-50 I, kerker filtered copper radiation. The diffractometer traces were recorded under exactly the same conditions in all experiments. ## Fig.1 ## EXPERIMENTAL DATA The diffractometer traces of the experimental products are shown in Figs. 2 and 3. The crystal structures of palygorskite and sepiclite in the pressure interval from 800 to 2000 kg/cm² and temperature range from 100 to 300°C remain unchanged. This is shown by the very close similarity of the traces of sepiclite (Fig.2, a-d) and pf palygorskite